
Security Assessment

OccamX
Apr 15th, 2022

Table of Contents

Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Understanding
External Dependencies

Privileged Roles

Findings
CMO-01 : Issues With The `convert()` Function From SushiSwap

CMO-02 : Potential Sandwich Attacks

CMO-03 : Missing Validation for Array Length

CMO-04 : Unused imports

ERC-01 : Potential Risk On `approve()`/`transferFrom()` Methods

MOA-01 : Centralization Related Risks

MOA-02 : Unlocked Compiler Version

MOA-03 : Proper Usage of `require` And `assert` Functions

MOA-04 : Variables That Could Be Declared as Immutable

MOA-05 : Missing Emit Events

MOA-06 : Lack of Input Validation

PMO-01 : Divide by Zero

PTM-01 : Initial Token Distribution

Appendix

Disclaimer

About

OccamX Security Assessment

Summary

This report has been prepared for OccamX to discover issues and vulnerabilities in the source code of the

OccamX project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by

industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

OccamX Security Assessment

Overview

Project Summary

Project Name OccamX

Platform EVM Compatible

Language Solidity

Codebase
https://github.com/OccamX-MilkomedaDEX/Milkomeda-OCCAMX-

sc/tree/audit_7_march

Commit 233d7a724f438baf2297d9b6406c6944c5882817

Audit Summary

Delivery Date Apr 15, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Mitigated Partially Resolved Resolved

Critical 0 0 0 0 0 0 0

Major 2 0 0 2 0 0 0

Medium 1 0 0 0 0 0 1

Minor 2 0 0 2 0 0 0

Informational 8 0 0 6 0 0 2

Discussion 0 0 0 0 0 0 0

OccamX Security Assessment

https://github.com/OccamX-MilkomedaDEX/Milkomeda-OCCAMX-sc/tree/audit_7_march

Audit Scope

ID File SHA256 Checksum

IPM interfaces/IPair.sol
c702c9100a2d334d71962a0797c

a53dd35406cf1bd04c9dc0f8490b

2fbf3ce72

IWA interfaces/IWADA.sol
81a69703e6dd0910035b729ae40

b61b5f335cdcfeebdaffa56e1ccc1

5fd2d412

MOX libraries

IER interfaces/IERC20.sol
d79228f24fab9904e1b0d29ec0d5

d0200268608861596acecd4441b

95d0e13b2

OMO Ownable.sol
9fb68dc3d03ba79c6286e5f14db1

00881e99fffa35bb9b9951d7d80fc

8d5b8d3

IEM interfaces/IERC2612.sol
f4730ad5c18d00a14f01433e99d7

e22c4f7e66b33583568e3da206b

0d66e6396

MOA

ICM interfaces/ICallee.sol
cbb430c097d252981c81710098a

826edc82093b513c46b950f6a5c

42d0c27a09

PTM ProtocolToken.sol
9f243f7a0f197256d592b051d240

dc9a1035fc925d2def60cfd8fe523

1b5870c

IEV interfaces/V1/IExchange.sol
d5a9d1a55121e5ad22da525ce6b

61776508ba47f2e07df58a0d5333

ad386182d

MOM interfaces

THM libraries/TransferHelper.sol
764551cf18a6fe37504c92874c20

a0299cc7e10b0c23cbfefe2293b4

30dc4533

IEP interfaces/IERC20Permit.sol
09993d4133a79688e1aa00b4183

d3cb33706e10c034572199249a2

7d340a8775

OccamX Security Assessment

ID File SHA256 Checksum

CMO Collector.sol
1651dace9fedf255a14162d9aa05

812eb2f52d7cea35e2224cd8f97a

72b20ce9

VMO interfaces/V1

IEC interfaces/IERC20Burnable.sol
1cea888edc14b715ce2c0cff09f60

51d4bfe5ba727016a3ddbec92cd

e52773b1

ERC ERC20Permit.sol
0888e6532a06b37e7bdfd852062

1dec13f2a3793533e60fa003c7fa

b22d72593

CHM CalHash.sol
f0aa0ff2cde564f7ce101010b3728

6fd9c6215cd457b13b1498a6d4e

c87ab917

RMO Router01.sol
177d1460b0b1213db9c488bd040

c5df9466c4268e1975598b8c871

67e7d4e1ad

IWD interfaces/IWADA10.sol
a6c9cca4751bc53ac0b37d4f6ad6

4fba2df72c47a679783f2bdcbbd5

bf79a737

PMO Pair.sol
fbd646322d6afdc1b9deb3372671

cf91ec518a7334e7754f0ebacf17

13ca7a6f

MOC

$/github/CertiKProject/certik-audit-projects/08e1acb77bede3fd414f57e6587f

b26320adb1ba/projects/Milkomeda-OCCAMX-sc-233d7a724f438baf2297d9

b6406c6944c5882817

UQM libraries/UQ112x112.sol
821ab924e12321a28d349108bb6

5fbf8956c6194d15ead3a261f58d

73a919003

IFM interfaces/IFactory.sol
91a1af70629ce8b3bcf4403fbc14

548ced717ded4278065a2c18fca

b2ff0206b

IRO interfaces/IRouter02.sol
420c03d3c921faf2596501f1141c

33a23fa2455e7f279163c318ab5c

987904bf

SER libraries/SafeERC20.sol
793b1c2f01399b5b2d8540c60b3f

3775f2dfd15a33406cbef035c5d7

50b1c9c1

OccamX Security Assessment

ID File SHA256 Checksum

RMC Router02.sol
e79513b4d2889fa99cf79867a298

3fccb93fa4671e4af2341185192f1

e089a14

CKP
$/github/CertiKProject/certik-audit-projects/08e1acb77bede3fd414f57e6587f

b26320adb1ba/projects

OLM libraries/OracleLibrary.sol
3e60fe579eaf2aaba1387069e9c5

6f674c0bcafe43f876d11b49baea

7c394493

MMO libraries/Math.sol
8be17db8484803ce35e9277153f

2d58d9b8757a4f84ed2a054e7f92

64b442283

FMO Factory.sol
87475e5ea7ff8358ed4cf881418a

c2de4a5464043a9cf16c8f52f8bb

8f420e81

IRM interfaces/IRouter01.sol
7036fc8625dcdb104fc6144ac062

45a0f5ed8a62338552151474a19

74d6e8ed2

LMO libraries/Library.sol
e0a0c476e474256f72d38815567

2e0df3663c25b2db89ef8bb5592c

0fb093f8f

SMM libraries/SafeMath.sol
bdb6d842f61551d03e01294740b

196e965f156b898e90edde03897

ed356c99d3

OccamX Security Assessment

Understanding

External Dependencies

The scope of the audit treats third-party entities as black boxes and assumes their functional correctness.

However, in the real world, third parties can be compromised and this may lead to lost or stolen assets.

There are a few dependent injection contracts or addresses in the current project:

WADA for the contract Router01 and Router02 .

ICallee for the contract Pair

We assume these contracts or addresses are valid and non-vulnerable actors and implement proper logic to

collaborate with the current project.

Privileged Roles

The following roles are adopted to enforce the access control:

Role _owner is adopted to update configurations of the contract Collector .

Role feeToSetter is adopted to update configurations of the contract Factory .

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to

the community. Any plan to invoke the aforementioned functions should be also considered to move to the

execution queue of Timelock contract.

OccamX Security Assessment

Findings

ID Title Category Severity Status

CMO-01
Issues With The convert() Function From

SushiSwap
Logical Issue Medium Resolved

CMO-02 Potential Sandwich Attacks Logical Issue Minor Acknowledged

CMO-03 Missing Validation for Array Length Logical Issue Informational Resolved

CMO-04 Unused imports Coding Style Informational Resolved

ERC-01
Potential Risk On

approve() /transferFrom() Methods
Logical Issue Minor Acknowledged

MOA-01 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

MOA-02 Unlocked Compiler Version Language Specific Informational Acknowledged

MOA-03
Proper Usage of require And assert

Functions
Coding Style Informational Acknowledged

MOA-04
Variables That Could Be Declared as

Immutable
Gas Optimization Informational Acknowledged

MOA-05 Missing Emit Events Coding Style Informational Acknowledged

MOA-06 Lack of Input Validation Volatile Code Informational Acknowledged

PMO-01 Divide by Zero Logical Issue Informational Acknowledged

OccamX Security Assessment

13
Total Issues

Critical 0 (0.00%)

Major 2 (15.38%)

Medium 1 (7.69%)

Minor 2 (15.38%)

Informational 8 (61.54%)

Discussion 0 (0.00%)

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1649173209183
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1649173443330
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648449437185
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648886777457
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648450117769
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482756252160
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482578597860
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482578597861
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482578597862
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482759221270
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648276474147
https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1649174919835

ID Title Category Severity Status

PTM-01 Initial Token Distribution
Centralization /

Privilege
Major Acknowledged

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648276267911

CMO-01 | Issues With The convert() Function From SushiSwap

Category Severity Location Status

Logical Issue Medium Collector.sol: 107~128 Resolved

Description

A known exploit exists within the Collector.convert() function (inherits from SushiSwap), allowing an

external attacker to steal funds within the Collector contract.

Example,

Suppose there is a [DIGG,WBTC] pair, which will generate DIGG-WBTC LP tokens as the fee to the

Collector contract. The DIGG-WBTC LP tokens will be converted to PToken via the convert() function.

However, there is no direct swap pair [DIGG,wada]. By default, these two tokens will be swapped into wada

first as there is no “bridge” is set.

The attacker creates a [DIGG,wada] swapping pair and add a small amount of liquidity.

Transactions in the DIGG-WBTC pool will send fees (in the form of DIGG-WBTC LP token) to

Collector .

The attacker calls convert(WBTC, DIGG) to convert those fees to PToken

Based on the code implementation, the call stack is:

Burn DIGG-WBTC LP token to get WBTC and DIGG

Swap WBTC/DIGG to wada first (due to no designated “bridge”)

Swap wada to PToken

However, due to the pair [DIGG,wada] is created by the attacker with low liquidity. The swap

transaction (4.b) will increase the price of wada significantly due to slippage in the new pair [DIGG,

wada].

Therefore, the attacker can use a small amount of wada to swap for a large amount of DIGG.

Additionally, another documented issue is that if the stakingContract (where the fees are transferred to) is

forked from SushiBar, an exploiter can add lots of PToken to the stakingContract , run convert() and

then remove the PToken . In this case, the attacker is able to withdraw a great amount of the fee.

These exploits are generally possible during the early stage of the project when the corresponding liquidity

pools have low liquidity.

Recommendation

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1649173209183
https://etherscan.io/tx/0x90fb0c9976361f537330a5617a404045ffb3fef5972cf67b531386014eeae7a9
https://github.com/sushiswap/sushiswap
https://github.com/sushiswap/sushiswap/blob/master/contracts/SushiMaker.sol#L96
https://github.com/sushiswap/sushiswap/blob/canary/contracts/SushiBar.sol

The current implementation enforces protection against flashloans, this is however not enough because a

whale could perform this attack. Also, this attack could be performed at the early stages of the project.

In the short term, regularly call the convert() function and ensure corresponding pools are set up with a

certain amount of liquidity.

In the long term, it is recommended to add access controls over the convert() function so only the team

can call it.

Alleviation

[OccamX]: The team resolved this issue by adding access controls over the convert() function in commit

562e76287cc94596fedcd94e7c2fa0eaf1b691e3

OccamX Security Assessment

https://github.com/OccamX-MilkomedaDEX/Milkomeda-OCCAMX-sc/commit/562e76287cc94596fedcd94e7c2fa0eaf1b691e3

CMO-02 | Potential Sandwich Attacks

Category Severity Location Status

Logical Issue Minor Collector.sol: 201 Acknowledged

Description

A sandwich attack might happen when an attacker observes a transaction swapping tokens without setting

restrictions on slippage or minimum output amount. The attacker can manipulate the exchange rate by

frontrunning (before the transaction being attacked) a transaction to purchase one of the assets and make

profits by backrunning (after the transaction being attacked) a transaction to sell the asset.

The function _swap() directly interacts with UniswapV2Pair and doesn't set restrictions on slippage or

minimum output amount, so transactions triggering this function are vulnerable to sandwich attacks,

especially when the input amount is large.

Recommendation

In the short term, triggering convert() function regularly to avoid swapping large amount of tokens.

In the long term, add restrictions for slippage.

Alleviation

[OccamX]: The team acknowledged this and will follow the suggestion to call convert() function regularly.

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1649173443330

CMO-03 | Missing Validation For Array Length

Category Severity Location Status

Logical Issue Informational Collector.sol: 96~105 Resolved

Description

In convertMultiple function, the length of token0 should be the same as the length of token1 .

Recommendation

Consider adding the validation:

requirerequire((token0token0..length length ==== token1 token1..lengthlength,,"the length of the array is invalid""the length of the array is invalid"));;

Alleviation

[OccamX]: The team resolved this issue by adding validation in commit

6fc74cecd04ce6c2897f64a91643dd7d93d08bee

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648449437185
https://github.com/OccamX-MilkomedaDEX/Milkomeda-OCCAMX-sc/commit/6fc74cecd04ce6c2897f64a91643dd7d93d08bee

CMO-04 | Unused Imports

Category Severity Location Status

Coding Style Informational Collector.sol: 9 Resolved

Description

The linked code contains unused imports.

99 importimport "./interfaces/IERC20Permit.sol""./interfaces/IERC20Permit.sol";;

Recommendation

Remove the unused imports for simplicity and better code readability.

Alleviation

[OccamX]: The team resolved this issue by removing the unused imports in commit

ad7ffd43058ae1f1a61032cce23cec13bd8ee6ed

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648886777457
https://github.com/OccamX-MilkomedaDEX/Milkomeda-OCCAMX-sc/commit/ad7ffd43058ae1f1a61032cce23cec13bd8ee6ed

ERC-01 | Potential Risk On approve() / transferFrom() Methods

Category Severity Location Status

Logical Issue Minor ERC20Permit.sol: 63~66, 73~79 Acknowledged

Description

The approve function could be used in a Front-Running attack that allows a spender to transfer more

tokens than the owner of the tokens ever wanted to allow the spender to transfer.

Here is a possible attack scenario:

Alice allows Bob to transfer N of Alice's tokens (N>0) by calling approve method on the Token smart

contract passing Bob's address and N as method arguments.

After some time, Alice decides to change from N to M (M>0) the number of Alice's tokens Bob is

allowed to transfer, so she calls approve method again, this time passing Bob's address and M as

the method arguments.

Bob notices Alice's second transaction before it was mined and quickly sends another transaction

that calls transferFrom method to transfer N Alice's tokens somewhere.

If Bob's transaction will be executed before Alice's transaction, then Bob will successfully transfer N

Alice's tokens and will gain the ability to transfer another M tokens.

Before Alice noticed that something went wrong, Bob calls transferFrom method again, this time to

transfer M Alice's tokens.

So, Alice's attempt to change Bob's allowance from N to M (N>0 and M>0) made it possible for Bob to

transfer N+M of Alice's tokens, while Alice never wanted to allow so many of her tokens to be transferred by

Bob.

Reference:

An Attack Vector on Approve/TransferFrom Methods

Recommendation

We advise the client to use functions like increaseAllowance() and decreaseAllowance() from the

ERC20.sol contract from OpenZeppelin.

Alleviation

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648450117769
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/docs-org/contracts/token/ERC20/ERC20.sol

[OccamX]: The team acknowledged this issue and decided not to change the current codebase at this

stage.

OccamX Security Assessment

MOA-01 | Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major

Factory.sol: 40~43, 45~48

Collector.sol: 57~67, 69~71, 73~75, 88~90

Ownable.sol: 30~42

Acknowledged

Description

In the contract Factory the role feeToSetter has authority over the functions shown in the diagram below.

Any compromise to the feeToSetter account may allow the hacker to take advantage of this authority.

Authenticated Role

Function
State Variables

Function State Variables
feeToSetter

setFeeTo

setFeeToSetter

msg

feeToSetter

feeTo

msg

feeToSetter

In the contract Collector the role _owner has authority over the functions shown in the diagram below.

Any compromise to the _owner account may allow the hacker to take advantage of this authority.

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482756252160

Authenticated Role

Function

State Variables

Function State Variables

Function State Variables

Function State Variables

_owner

setBridge

setStakingContract

setPToken

setLock

PToken

wada

_bridges

stakingContract

PToken

locked

In the contract Ownable the role _owner has authority over the functions shown in the diagram below.

Any compromise to the _owner account may allow the hacker to take advantage of this authority.

Authenticated Role Function State Variables

_owner transferOwnership
owner

pendingOwner

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

OccamX Security Assessment

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level

in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the

public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[OccamX]: The team will move these admin functionalities to multisigs in the future.

OccamX Security Assessment

MOA-02 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational

Factory.sol: 1

ERC20Permit.sol: 1

CalHash.sol: 1

Collector.sol: 4

Router02.sol: 1

Pair.sol: 1

Router01.sol: 1

ProtocolToken.sol: 2

Ownable.sol: 5

Acknowledged

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to different compiler versions. This can lead to an

ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can be

compiled at. For example, for version v0.6.0 the contract should contain the following line:

pragmapragma soliditysolidity 0.60.6.0.0;;

Alleviation

[OccamX]: The team acknowledged this issue and decided not to change the current codebase at this

stage.

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482578597860

MOA-03 | Proper Usage Of require And assert Functions

Category Severity Location Status

Coding Style Informational
Router02.sol: 29, 56, 97, 265, 314, 372

Router01.sol: 26, 52, 93, 214, 256
Acknowledged

Description

The assert function should only be used to test for internal errors, and to check invariants. The require

function should be used to ensure valid conditions, such as inputs, or contract state variables are met, or to

validate return values from calls to external contracts.

Recommendation

We advise the client using the require function, along with a custom error message when the condition

fails, instead of the assert function.

Alleviation

[OccamX]: The team acknowledged this issue and decided not to change the current codebase at this

stage.

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482578597861

MOA-04 | Variables That Could Be Declared As Immutable

Category Severity Location Status

Gas Optimization Informational
ERC20Permit.sol: 16

Pair.sol: 18
Acknowledged

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables

can be assigned during contract creation but will remain constant throughout the lifetime of a deployed

contract. A big advantage of immutable variables is that reading them is significantly cheaper than reading

from regular state variables since they will not be stored in storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only

works in Solidity version v0.6.5 and up.

Alleviation

[OccamX]: The team acknowledged this issue and decided not to change the current codebase at this

stage.

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482578597862

MOA-05 | Missing Emit Events

Category Severity Location Status

Coding Style Informational

Factory.sol: 40~43, 45~48

Collector.sol: 69~71, 73~75, 88~90

Pair.sol: 66~70

Acknowledged

Description

The function that affects the status of sensitive variables should be able to emit events as notifications. For

example,

Collector.setStakingContract()

Collector.setPToken()

Collector.setLock()

Factory.setFeeTo()

Factory.setFeeToSetter()

Pair.initialize()

Recommendation

Consider adding events for sensitive actions, and emit them in the functions.

Alleviation

[OccamX]: The team acknowledged this issue and decided not to change the current codebase at this

stage.

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=16482759221270

OccamX Security Assessment

MOA-06 | Lack Of Input Validation

Category Severity Location Status

Volatile Code Informational

Factory.sol: 15~17

Router02.sol: 23~26

Collector.sol: 39~48

Acknowledged

Description

In contract Factory , the assigned value to address type variable _feeToSetter should be verified as a

non-zero value to prevent error.

In contract Router02 , the assigned values to address type variables factory , WADA should be verified as

non-zero values to prevent error.

In contract Collector , the assigned values to address type variables factory , PToken , and wada should

be verified as non-zero values to prevent error.

Recommendation

In contract Factory , consider checking that the address is not zero in the function as shown below:

requirerequire((_feeToSetter _feeToSetter !=!= addressaddress((00)),,"_feeToSetter is zero address!""_feeToSetter is zero address!"));;

In contract Router02 , consider checking that the addresses are not zero in the constructor, like below:

requirerequire((_factory _factory !=!= addressaddress((00)),,"_factory is zero address!""_factory is zero address!"));;

requirerequire((_WADA _WADA !=!= addressaddress((00)),,"_WADA is zero address!""_WADA is zero address!"));;

In contract Collector , consider checking that the addresses are not zero in the constructor, like below:

requirerequire((_factory _factory !=!= addressaddress((00)),,"_factory is zero address!""_factory is zero address!"));;

requirerequire((_PToken _PToken !=!= addressaddress((00)),,"_PToken is zero address!""_PToken is zero address!"));;

requirerequire((_wada _wada !=!= addressaddress((00)),,"_wada is zero address!""_wada is zero address!"));;

Alleviation

[OccamX]: The team acknowledged this issue and decided not to change the current codebase at this

stage.

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648276474147

OccamX Security Assessment

PMO-01 | Divide By Zero

Category Severity Location Status

Logical Issue Informational Pair.sol: 143~145 Acknowledged

Description

If the value of totalSupply is 0, the following two division operations will fail due to the divide by 0 error,

which ultimately make the invocation to burn() function fail.

144144 amount0 amount0 == liquidity liquidity..mulmul((balance0balance0)) // _totalSupply _totalSupply;; // using balances ensures pro-rata// using balances ensures pro-rata

distributiondistribution

145145 amount1 amount1 == liquidity liquidity..mulmul((balance1balance1)) // _totalSupply _totalSupply;; // using balances ensures pro-rata// using balances ensures pro-rata

distributiondistribution

Recommendation

Consider add the following validation in the function burn()

11 requirerequire((totalSupply totalSupply !=!= 00,, "The value of totalSupply must not be 0""The value of totalSupply must not be 0"));;

Alleviation

[OccamX]: The team acknowledged this issue and decided not to change the current codebase at this

stage.

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1649174919835

PTM-01 | Initial Token Distribution

Category Severity Location Status

Centralization / Privilege Major ProtocolToken.sol: 12~14 Acknowledged

Description

All of the tokens are sent to the assetManager when deploying the contract. This could be a centralization

risk as the assetManager can distribute tokens without obtaining the consensus of the community.

1212 constructorconstructor((uintuint totalSupply totalSupply,, addressaddress assetManager assetManager,, stringstring memorymemory name name,, stringstring

memorymemory symbol symbol)) ERC20ERC20((namename,, symbol symbol)) ERC20CappedERC20Capped((totalSupplytotalSupply)) {{

1313 _mint_mint((assetManagerassetManager,, totalSupply totalSupply));;

1414 }}

Recommendation

We recommend the team to be transparent regarding the initial token distribution process, and the team

shall make enough efforts to restrict the access of the private key.

Alleviation

[OccamX]: The assetManager will be a multisig to ensure decentralization.

OccamX Security Assessment

https://accelerator.audit.certikpowered.info/project/b1085730-9e32-11ec-b688-57069fbe173e/report?fid=1648276267911

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in combination

with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make the

codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under the

specified commit.

OccamX Security Assessment

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

OccamX Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by

the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes, nor

may copies be delivered to any other person other than the Company, without CertiK’s prior written consent

in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts CertiK to perform a security assessment. This report

does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors, business, business model or

legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and

blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that

each company and individual are responsible for their own due diligence and continuous security. CertiK’s

goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and

consistently changing technologies, and in no way claims any guarantee of security or functionality of the

technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development.

You agree that your access and/or use, including but not limited to any services, reports, and materials, will

be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens are emergent

technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could

include false positives, false negatives, and other unpredictable results. The services may access, and

depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER

MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND

OccamX Security Assessment

“AS AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO

THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO

THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE

FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND

ALL WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT

LIMITING THE FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES,

THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER

PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH

ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE

OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK

PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND

THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS

OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY

STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES

ANY REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE

ACCURACY, RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED

THROUGH THE SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY

ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR

DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY

PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM

CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER

MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED

TO, ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

OccamX Security Assessment

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY

OR OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES

OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT

REPORTS OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF

FINANCIAL, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

OccamX Security Assessment

About

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and correctness

of smart contracts and blockchain-based protocols. Through the utilization of our world-class technical

expertise, alongside our proprietary, innovative tech, we’re able to support the success of our clients with

best-in-class security, all whilst realizing our overarching vision; provable trust for all throughout all facets of

blockchain.

OccamX Security Assessment

